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The dynamics of long water waves are considered in a curved geometry repre- 
senting a canal bend. The presence of the bend is found to produce a spectrum of 
transverse oscillations in the canal. The associated dominant amplitudes are 
evaluated for both tidal periods and higher frequencies representative of tsuna- 
mis. It is found that low-frequency waves do not lead to significant transverse 
amplitudes. For tsunamis, the presence of the bend may result in considerable 
changes in the local wave amplitude. 

1. Introduction 
Recent theoretical investigations into estuarial tidal flows have included con- 

tributions by Hunt (1964) and Johns (1966,1967). Although eachof these authors 
accounted for topographical features to a varying degree, the direct presence of a 
bend in a river estuary was neglected. In  the methods used therein, it was im- 
plicitly assumed that all dynamical conditions were solely dependent upon a 
curvilinear co-ordinate along the middle of the river. It is natural, therefore, to 
inquire to what extent the resulting formulae are likely to be modified by the 
inclusion of a curved geometry to represent a bend. We may ask, for example, 
whether it will produce a dynamical effect that extends (significantly) upstream 
and downstream of the bend. Secondly, will the bend induce a perceptible trans- 
verse surface slope in the estuary comparable with that known to be associated 
with the Coriolis force? (Abbot 1960.) Principally, it  is with a view to answering 
these questions that the present paper is concerned. At the same time, however, 
the theory of the subsequent paragraphs is applicable to the propagation of 
tsunamis, or other long-period waves, into a curved canal, and numerical compu- 
tations are undertaken in both cases. 

In  order to assess the gross effect of a curved geometry on long waves, we con- 
sider here the dynamics of standing waves in a curved canal. The methods used 
depend upon the application of suitable co-ordinate systems in different sections 
of the canal. The formulae are then evaluated numerically in the following 
cases: (i) for a semi-diurnal tidal wave in a curved canal of estuarial dimensions; 
(ii) for a higher-frequency wave with a period representative of a tsunami. 

It is found that the curved geometry induces within the canal a spectrum of 
transverse oscillations. The numerical value of the amplitudes of these oscilla- 

t Present address : University of Damascus, Syria. 
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tions is found to be closely related to the frequency of the primary wave. In 
case (i) the low tidal frequency effectively inhibits the generation of significant 
transverse oscillations, and the dynamics may accordingly be evaluated by use 
of a rectilinear geometry. In  case (ii), for a wave with a period - 3-4min, the 
local amplitude of the dominant transverse oscillation can amount to as much as 
20 % of that of the primary wave. The presence of a bend may therefore lead to it 
significant increase in the destructive capacity of a tsunami. 

2. Formulation 
The bend in the canal is represented by the region between the arcs of two con- 

centric circles having radii a and b with a < b. The angle subtended by each of 
these arcs at  the centre of its associated circle is 8, and the angular position of a 
general point in the curved region is specified by 8, which is such that 8 = &r 
and 8 = 8, + &r at the ends of the circular section. The continuation of the canal 
for 8 < +n and 0 > 8, + Qn- is represented by straight parallel-sided channels 
of width b - a, the lateral boundaries of which are tangential to the circular arcs 
at  3 = in- and 8 = 8, + Qn. I n  the subsequent paragraphs, the method of solution 
of the equations governing frictionless shallow-water oscillations in the canal will 
depend upon the use of a different horizontal axis system in each region. These 
will be amenable to the local geometry. Their orientation, with respect to the 
given configuration, is shown in figure 1. 

The z-axis is measured vertically upwards from the undisturbed level of the 
water in the canal. Supposing that the water is of constant mean depth h, and 
that the instantaneous position of the free surface is denoted by z = 5, then, in 
the absence of the Coriolis acceleration, the linearized shallow-water equations 
lead to 

where A is the two-dimensional horizontal Laplacian operator. Specifying an 
oscillation having an angular frequency a, a solution of (2.1) is represented by 

ghAg = a2</:/at2, (2.1) 

A2 + h2Z = 0,  
Z cos at and so 2 must satisfy 

where h2 = a2/gh. 

In  the curved region (l) ,  we use cylindrical co-ordinates ( r ,  8, z)  in terms of 
which the solution 2, must satisfy 

azz, 1 az, 1 a2z, arz+r ar+- -+A2Z,  = 0 (a G r G b ;  in- G 8 G e,+an-). (2.3) r2 a82 

The accompanying boundary conditions must be compatible with a zero radial 
velocity on t'he lateral walls: 

aZ,/ar = 0 a t  r = a,&. (2.4) 
Within the rectilinear region (2), the use of horizontal Cartesian co-ordinates 
(x, y) in (2.2) leads to  
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whilst the appropriate conditions to be applied at  the lateral boundaries yield 
the requirements 

Likewise, in the region (3),  we have 

aZ2/ay = 0 at y = a,b. (2.6) 

with aZ,/aY = 0 at Y = a, b. (2.8) 

Y 

X 

FIGURE 1. Diagrammatic sketch of co-ordinate system. 

The appropriate solutions of the foregoing system of equations must be com- 
patible with a continuity of conditions at positions of common validity. With 
regard to both elevation and longitudinal current, this is readily found to yield 

and 
(2.10) 

It is not difficult to show that these conditions automatically imply the continuity 
of transverse current. 
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3. Solution of equations 
In  the present work it is stipulated that the solutions of (2.5) and (2.7) shall 

be representative of standing waves (uniform across the canal) at  a great distance 
upstream and downstream from the curved region. For sufficiently large values 
of x and -- X we must therefore have 

2, - A cos Ax + B sin Ax 

2, - G cos AX + H sin A X .  

(3.1) 

(3.2) and 

The effect of the bend will be to generate transverse oscillations in regions (2) 
and (3) that must attenuate with distance in order to be compatible with (3.1) 
and (3.2). With this in mind, it is readily found that a suitable function fulfilling 
(2.5) and (2.6) is of the form 

where 

(3.3) 

(3-4) 

In  order to secure a real value of pn, we must also have that 

A(b-a)  < 7T, (3.5) 

which, for long-period oscillations in canals of realistic dimensions, is always 
satisfied. By virtue of the linearity of (2.5) we may therefore write an appro- 
priate solution in the form 

The constants A and B are prescribed by the amplitude and spatial phase of the 
oscillation, whilst Cn is to be determined by application of the juncture conditions 
(2.9) and (2.10). Likewise, in region (3), we obtain 

2, = G cos AX + H sin AX + 
n=l 

(3.7) 

where G, H and D, are all to be found in terms of A and B. 
Within the region (l) ,  we propose a basic solution of (2.3) in the form 

2, = R(r)@(O), (3.8) 

R and 0 being respectively functions of r and 8 only. It is found that we may fulfil 
(2.3) by choosing R and 0 to satisfy the equations 

and (3.10) 

where the separation constant K may be either real or imaginary. A real value of 
K will lead to a solution which is a linear combination of cos KO and sin KO, 
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this clearly being the part required to communicate the basic standing wave 
(3.1) into region (3). An imaginary value of K will lead to that part of the solution 
responsible for the transverse oscillations in (3.6) and (3.7). As far as the real 
value of K is concerned, we may reasonably expect that K = O(ha) in order to  
correspond approximately to the situation in regions (2) and (3). More precisely, 
however, we may solve (3.9) for real and non-integral values of K and obtain a 
solution for R in the form of a linear combination of Bessel functions: 

R = PJ,(hr) + QJ-,(hr). (3.11) 

In  order that (3.11) shall lead to the fulfilment of (2.4), we may choose P and 
Q so that R = +,(hr) = J&(ha)J.,(hr) -JLK(ha)JK(hr), (3.12) 

where 9ww = 0, (3.13) 

and the primes denote a differentiation with respect to the arguments of the 
various functions. The relation (3.13) is therefore a characteristic equation from 
which the exact value of K is to be determined. 

For K 2  < 0 we write K = ip, 

and, by a similar analysis, find a solution for R in which 

where 

(3.14) 

(3.15) 

(3.16) 

As will be shown later, there exists an infinite sequence of real values of ,u 
satisfying (3.16). By a superposition of basic solutions, we may therefore write 
the full solution for 2, in the form 

2, = $&r) (a cos KO + ,8 sin KO) + C q&(hr) {ys exp (psL,e) + 8, exp ( -psO)). 
W 

s=l 
(3.17) 

The arbitrary constants in (3.17) will be chosen so as to communicate the com- 
plete oscillations between the rectilinear canals (2) and (3). 

In  general, the solution of the transcendental equation (3.13) is obtainable only 
by a numerical process. In  the present work, however, we use an expansion tech- 
nique in order to construct a suitable approximate procedure. We may write 

$&W = 91(h.+4, (3.18) 

where 6 = h(b-a) ,  (3.19) 

and so, by a formal application of Taylor's theorem, 

Upon use of (3.12) in (3.20), 

(3.21) 
E" 

,=on. 
$&(hb) = C 7 {J&) J(1zp(w) - J&(w)J(g+1)(w)}, 

where w = ha. 
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The coefficients of the successive powers of e in (3.21) are readily expressible in 
terms of elementary functions (Watson 1958), and we obtain 

B sin KT 
#',(hb) = -___ 

nu 

€2 ~ 4 + 1 1 ~ 2  2 ~ 2 + 3  --( 3 0 4  
- ~ 0 2  + 1)) + O(e4). (3.22) 

If e be in some sense small, the use of (3.22) in (3.13) leads to 

~2 = W 2 + € W + h E 2 + ~ ( e 3 ) .  (3.23) 

If b / a  < 2 ,  an application of the binomial theorem, and substitution from (3.19), 

(3.24) 
are then found to yield 

In  the customary method of evaluation of estuarial tides, in which the solution 
is dependent solely upon a curvilinear co-ordinate along the middle of the 
canal, the corresponding value of K is @(a + b ) .  With values of a and b for which 
(typically) b/a e! 1.5, the additional term in (3.24) amounts to  less than about 
1 yo of the elementary approximation. 

The solutions of (3.16) are more easily obtained by assuming that p is in some 
sense large. The analysis is effected by using the asymptotic development of a 
Bessel function of numerically large order (Watson 1958). From this, we find that 

h h 
2 24a 

K = - ( a + b ) - - ( b - a ) 2 + . . . .  

#&r) CC cos plog - + h2(r2 ~~ - sin ( ,u log :) + o (;) . j- ( 9 4,u 

The use of (3.25) in (3.16) then reveals that p satisfies 

h2(b2 - a') 

which yields 

log - b = ST - tan-l -+o($)) ) 
( s =  1,2,  ...). 

a 

Upon neglect of terms O( 1/p2), this reduces to 

b h2(b2 - a2 1 
p log - = S T  - 

a 4P 
, 

from which we obtain the approximate solutions 

(3.25) 

(3.26) 

(3.27) 

(3.28) 

(3.29) 

The first term in (3.29) agrees with Cochran (1964). For tidal conditions in canals 
of realistic estuarial dimensions, the first term completely dominates the second 
and will accordingly furnish an excellent approximation to p. 

t In  the subsequent numerical computations, the factor of proportionality is taken as 

i 
2nhaexP(PN. 
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4. Determination of the constants 

cation of the juncture conditions (2.9) and (2.10). 

to the requirements 

The arbitrary constants in the solutions of 8 3 will here be determined by appli- 

Upon use of the formal solutions (3.6) and (3.17), it is found that (2.9) leads 

since, at  8 = Qn, y and T have the same significance. These relations must be 
satisfied for all values of r in the interval (a, b).  It is therefore necessary to develop 
the right-hand sides of (4.1) and (4.2) as suitable Fourier series and then, in the 
resulting expressions, to compare the coefficients of like orthogonal functions. 
With regard to (4.1), this procedure is found to yield the relations 

x /:yJr,n)dr (n = 1,2, ...), 

where E(a, p) = a cos +Kn + /3 sin +Kn 

and 

Likewise, (4.2) leads to  

m 

s = l  
- C ,us[ys exp (,us in) - 8, exp ( -,us +n)] 1;- dr 

where 

(n = 1 ,2  ,... ), (4.8) 
F(a,  P )  = a! sin iKn- - p cos +KIT. (4.9) 
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Upon elimination of C, between (4.4) and (4.8), and the subsequent elimination 
of E(a,P) and B’(a,p) from the resultant by use of (4.3) and (4.7), we obtain an 
infinite sequence of relations between ys7 S,, A and B. Similarly, by application 
of (2.10), we find that 

(b-a)G = (E(a,~)cosKO,-F(a,p)sinK8,} xK(v ,  0 )dr  
m J: 

s= 1 

$(b - a)Dn = {E(a, /I) cos KO, - Y(a ,  p) sin KO,} x&, n )  dr J: 

and 

(n = 1,2  ,... ). (4.13) 

Upon elimination of D, between (4.11) and (4.13) and substitution for E(a,P) 
and B’(a,/3) from (4.3) and (4.7), we obtain a second infinite sequence of relations 
between ys, a,, A and B. For prescribed values of A and B, we may there- 
fore express ys and S, (s = 1,2, ...) as the ratio between certain determinants of 
infinite order. In  a practical evaluation, however, it  is necessary to truncate the 
infinite series at an appropriate stage, thus obtaining, after a finite number of 
operations, an approximation to the various coefficients. This procedure pre- 
supposes, of course, the convergence of all the infinite processes. We may there- 
fore regard suitable approximations to ys and S, as having been determined for 
1 < s < m, say. 

Appropriate representations for G and H may now be obtained by calculating 
E(a,P) and B’(a,P) from (4.3) and (4.7) and then using (4.10) and (4.12). The 
complete analytical expressions are lengthy, but are without attendant diffi- 
culties as regards numerical computation. 

5. Numerical evaluation 
I n  the present paper, the various infinite series representing the transverse 

oscillations will be truncated after one term (m = 1). The accuracy of this re- 
duction will be considered later. Furthermore, we choose the spatial phase of the 
waves so that B = 0. With these simplifications, the problem reduces (essentially) 
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to the determination of the constants y1 and 8,. These are now solutions of a 
relatively simple pair of simultaneous equations, the coefficients in which involve 
the integrals detailed in $4. The values of these integrals may be obtained by 
numerical quadrature or, if E be sufficiently small, by power series expansion in 
terms of e. In  the present work, both methods (when applicable) have been used, 
but the detail is not given here. 

On the grounds of energy conservation, it is evident that the amplitudes of the 
standing waves in regions (2) and (3) must be identical at  great distances from 
the bend. This requirement necessitates the relation 

A' = Gz+ H2 ,  (5.1) 

Cll A alA PIA Yl lAi  
(i) - 1.92 x 10-5 0.376 0.01 1 - 8.41 x 10-24 
(ii) -0.207 - 3.91 2.05 - 3.70 x 10-14 

6JAi DllA CIA H I A  
(i) - 6.17 x 10-l' - 2.36 x 10-5 0.999 2.61 x 
(i i)  - 3.08 x -0.17 0.881 - 0.465 

TABLE 1. Numerical values of coefficients in solution: 
(i) r = 1.45 x see-l; (ii) c = 3 x 10-2 see-1 

FIGURE 2. Contours of equal values of Z / A  in case (ii). 
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the approximate fulfilment of which will be taken to justify the before-mentioned 
truncation processes. 

In  both the numerical examples considered here, we take a = lOOOm, b = 

1700m, h = 12m and 8, = 90". In  case (i) we take c = 1.45 x lo-4sec-1 whilst 
in case (ii) c = 3 x see-l. The values of the various coefficients in (3.6), 
(3.7) and (3.17) are then given in table 1. In  both cases, we see that the results 
are consistent with (5.1). In  case (i) the relatively small values of C, and D, 
indicate that the tidal dynamics may effectively be deduced from the rectilinear 
models referred to in § 1. 

The contours of equal values of Z / A  within the canal, corresponding to case 
(ii), are given in figure 2. From this, it  is evident that the maximum wave ampli- 
tudes are attained at  the outside of the bend. These amount to about a 20% 
increase over the amplitude of the primary oscillation. 

Finally, we observe that these dynamical effects are essentially confined to 
within a distance from the bend less than the width of the canal. Accordingly, it  
is permissible to insert a barrier across the canal at a sequence of positions in 
region (3). The model is then applicable to the case of a tsunami-type oscillation 
in a curved canal which is closed at its landward end. 
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